Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
medRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38463998

ABSTRACT

The dynamics of SARS-CoV-2 transmission are influenced by a variety of factors, including social restrictions and the emergence of distinct variants. In this study, we delve into the origins and dissemination of the Alpha, Delta, and Omicron variants of concern in Galicia, northwest Spain. For this, we leveraged genomic data collected by the EPICOVIGAL Consortium and from the GISAID database, along with mobility information from other Spanish regions and foreign countries. Our analysis indicates that initial introductions during the Alpha phase were predominantly from other Spanish regions and France. However, as the pandemic progressed, introductions from Portugal and the USA became increasingly significant. Notably, Galicia's major coastal cities emerged as critical hubs for viral transmission, highlighting their role in sustaining and spreading the virus. This research emphasizes the critical role of regional connectivity in the spread of SARS-CoV-2 and offers essential insights for enhancing public health strategies and surveillance measures.

2.
Antibiotics (Basel) ; 13(2)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38391580

ABSTRACT

Wastewater treatment plants (WWTPs) are recognized as important niches of antibiotic-resistant bacteria that can be easily spread to the environment. In this study, we collected wastewater samples from the WWTP of A Coruña (NW Spain) from April 2020 to February 2022 to evaluate the presence of Gram-negative bacteria harboring carbapenemase genes. Bacteria isolated from wastewater were classified and their antimicrobial profiles were determined. In total, 252 Gram-negative bacteria carrying various carbapenemase genes were described. Whole-genome sequencing was conducted on 55 selected carbapenemase producing isolates using Oxford Nanopore technology. This study revealed the presence of a significant population of bacteria carrying carbapenemase genes in WWTP, which constitutes a public health problem due to their risk of dissemination to the environment. This emphasizes the usefulness of WWTP monitoring for combating antibiotic resistance. Data revealed the presence of different types of sequences harboring carbapenemase genes, such as blaKPC-2, blaGES-5, blaGES-6, blaIMP-11, blaIMP-28, blaOXA-24, blaOXA-48, blaOXA-58, blaOXA-217, and blaVIM-2. Importantly, the presence of the blaKPC-2 gene in wastewater, several months before any clinical case was detected in University Hospital of A Coruña, suggests that wastewater-based epidemiology can be used as an early warning system for the surveillance of antibiotic-resistant bacteria.

3.
Mol Oncol ; 18(5): 1093-1122, 2024 May.
Article in English | MEDLINE | ID: mdl-38366793

ABSTRACT

The incidence of colorectal cancer (CRC) has increased worldwide, and early diagnosis is crucial to reduce mortality rates. Therefore, new noninvasive biomarkers for CRC are required. Recent studies have revealed an imbalance in the oral and gut microbiomes of patients with CRC, as well as impaired gut vascular barrier function. In the present study, the microbiomes of saliva, crevicular fluid, feces, and non-neoplastic and tumor intestinal tissue samples of 93 CRC patients and 30 healthy individuals without digestive disorders (non-CRC) were analyzed by 16S rRNA metabarcoding procedures. The data revealed that Parvimonas, Fusobacterium, and Bacteroides fragilis were significantly over-represented in stool samples of CRC patients, whereas Faecalibacterium and Blautia were significantly over-abundant in the non-CRC group. Moreover, the tumor samples were enriched in well-known periodontal anaerobes, including Fusobacterium, Parvimonas, Peptostreptococcus, Porphyromonas, and Prevotella. Co-occurrence patterns of these oral microorganisms were observed in the subgingival pocket and in the tumor tissues of CRC patients, where they also correlated with other gut microbes, such as Hungatella. This study provides new evidence that oral pathobionts, normally located in subgingival pockets, can migrate to the colon and probably aggregate with aerobic bacteria, forming synergistic consortia. Furthermore, we suggest that the group composed of Fusobacterium, Parvimonas, Bacteroides, and Faecalibacterium could be used to design an excellent noninvasive fecal test for the early diagnosis of CRC. The combination of these four genera would significantly improve the reliability of a discriminatory test with respect to others that use a single species as a unique CRC biomarker.


Subject(s)
Bacteroides , Biomarkers, Tumor , Colorectal Neoplasms , Feces , Fusobacterium , Humans , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/diagnosis , Fusobacterium/isolation & purification , Fusobacterium/genetics , Male , Female , Bacteroides/isolation & purification , Bacteroides/genetics , Middle Aged , Feces/microbiology , Faecalibacterium/isolation & purification , Faecalibacterium/genetics , Aged , RNA, Ribosomal, 16S/genetics , Gastrointestinal Microbiome/genetics , Saliva/microbiology , Adult
4.
Int J Antimicrob Agents ; 62(4): 106935, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37541530

ABSTRACT

OBJECTIVES: In order to inform and anticipate potential strategies aimed at combating KPC-producing Klebsiella pneumoniae infections, we analysed imipenem/relebactam and ceftazidime/avibactam single-step mutant frequencies, resistance development trajectories, differentially selected resistance mechanisms and their associated fitness cost using four representative high-risk K. pneumoniae clones. METHODS: Mutant frequencies and mutant preventive concentrations were determined using agar plates containing incremental concentrations of ß-lactam/ß-lactamase inhibitor. Resistance dynamics were determined through incubation for 7 days in 10 mL MH tubes containing incremental concentrations of each antibiotic combination up to their 64 × baseline MIC. Two colonies per strain from each experiment were characterized by antimicrobial susceptibility testing, whole genome sequencing and competitive growth assays (to determine in vitro fitness). KPC variants associated with imipenem/relebactam resistance were characterized by cloning and biochemical experiments, atomic models and molecular dynamics simulation studies. RESULTS: Imipenem/relebactam prevented the emergence of single-step resistance mutants at lower concentrations than ceftazidime/avibactam. In three of the four strains evaluated, imipenem/relebactam resistance development emerged more rapidly, and in the ST512/KPC-3 clone reached higher levels compared to baseline MICs than for ceftazidime/avibactam. Lineages evolved in the presence of ceftazidime/avibactam showed KPC substitutions associated with high-level ceftazidime/avibactam resistance, increased imipenem/relebactam susceptibility and low fitness costs. Lineages that evolved in the presence of imipenem/relebactam showed OmpK36 disruption, KPC modifications (S106L, N132S, L167R) and strain-specific substitutions associated with imipenem/relebactam resistance and high fitness costs. Imipenem/relebactam-selected KPC derivatives demonstrated enhanced relebactam resistance through important changes affecting relebactam recognition and positioning. CONCLUSIONS: Our findings anticipate potential resistance mechanisms affecting imipenem/relebactam during treatment of KPC-producing K. pneumoniae infections.

5.
Mol Oncol ; 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37558206

ABSTRACT

Oral and intestinal samples from a cohort of 93 colorectal cancer (CRC) patients and 30 healthy controls (non-CRC) were collected for microbiome analysis. Saliva (28 non-CRC and 94 CRC), feces (30 non-CRC and 97 CRC), subgingival fluid (20 CRC), and tumor tissue samples (20 CRC) were used for 16S metabarcoding and/or RNA sequencing (RNAseq) approaches. A differential analysis of the abundance, performed with the ANCOM-BC package, adjusting the P-values by the Holm-Bonferroni method, revealed that Parvimonas was significantly over-represented in feces from CRC patients (P-value < 0.001) compared to healthy controls. A total of 11 Parvimonas micra isolates were obtained from the oral cavity and adenocarcinoma of CRC patients. Genome analysis identified a pair of isolates from the same patient that shared 99.2% identity, demonstrating that P. micra can translocate from the subgingival cavity to the gut. The data suggest that P. micra could migrate in a synergistic consortium with other periodontal bacteria. Metatranscriptomics confirmed that oral bacteria were more active in tumor than in non-neoplastic tissues. We suggest that P. micra could be considered as a CRC biomarker detected in non-invasive samples such as feces.

6.
Environ Sci Pollut Res Int ; 30(32): 79315-79334, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37286834

ABSTRACT

Wastewater-based epidemiology has been widely used as a cost-effective method for tracking the COVID-19 pandemic at the community level. Here we describe COVIDBENS, a wastewater surveillance program running from June 2020 to March 2022 in the wastewater treatment plant of Bens in A Coruña (Spain). The main goal of this work was to provide an effective early warning tool based in wastewater epidemiology to help in decision-making at both the social and public health levels. RT-qPCR procedures and Illumina sequencing were used to weekly monitor the viral load and to detect SARS-CoV-2 mutations in wastewater, respectively. In addition, own statistical models were applied to estimate the real number of infected people and the frequency of each emerging variant circulating in the community, which considerable improved the surveillance strategy. Our analysis detected 6 viral load waves in A Coruña with concentrations between 103 and 106 SARS-CoV-2 RNA copies/L. Our system was able to anticipate community outbreaks during the pandemic with 8-36 days in advance with respect to clinical reports and, to detect the emergence of new SARS-CoV-2 variants in A Coruña such as Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529 and BA.2) in wastewater with 42, 30, and 27 days, respectively, before the health system did. Data generated here helped local authorities and health managers to give a faster and more efficient response to the pandemic situation, and also allowed important industrial companies to adapt their production to each situation. The wastewater-based epidemiology program developed in our metropolitan area of A Coruña (Spain) during the SARS-CoV-2 pandemic served as a powerful early warning system combining statistical models with mutations and viral load monitoring in wastewater over time.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Spain/epidemiology , Wastewater , Pandemics , RNA, Viral , Wastewater-Based Epidemiological Monitoring , Disease Outbreaks
7.
Antibiotics (Basel) ; 12(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37370318

ABSTRACT

The OXA-10 class D ß-lactamase has been reported to contribute to carbapenem resistance in non-fermenting Gram-negative bacilli; however, its contribution to carbapenem resistance in Enterobacterales is unknown. In this work, minimum inhibitory concentrations (MICs), whole genome sequencing (WGS), cloning experiments, kinetic assays, molecular modelling studies, and biochemical assays for carbapenemase detection were performed to determine the impact of OXA-10 production on carbapenem resistance in two XDR clinical isolates of Escherichia coli with the carbapenem resistance phenotype (ertapenem resistance). WGS identified the two clinical isolates as belonging to ST57 in close genomic proximity to each other. Additionally, the presence of the blaOXA-10 gene was identified in both isolates, as well as relevant mutations in the genes coding for the OmpC and OmpF porins. Cloning of blaOXA-10 in an E. coli HB4 (OmpC and OmpF-deficient) demonstrated the important contribution of OXA-10 to increased carbapenem MICs when associated with porin deficiency. Kinetic analysis showed that OXA-10 has low carbapenem-hydrolysing activity, but molecular models revealed interactions of this ß-lactamase with the carbapenems. OXA-10 was not detected with biochemical tests used in clinical laboratories. In conclusion, the ß-lactamase OXA-10 limits the activity of carbapenems in Enterobacterales when combined with low permeability and should be monitored in the future.

8.
J Antimicrob Chemother ; 78(5): 1195-1200, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36918743

ABSTRACT

OBJECTIVES: To describe and characterize the emergence of resistance to ceftolozane/tazobactam, ceftazidime/avibactam and imipenem/relebactam in a patient receiving ceftazidime/avibactam treatment for an MDR Pseudomonas aeruginosa CNS infection. METHODS: One baseline (PA1) and two post-exposure (PA2 and PA3) isolates obtained before and during treatment of a nosocomial P. aeruginosa meningoventriculitis were evaluated. MICs were determined by broth microdilution. Mutational changes were investigated through WGS. The impact on ß-lactam resistance of mutations in blaPDC and mexR was determined through cloning experiments and complementation assays. RESULTS: Isolate PA1 showed baseline resistance mutations in DacB (I354A) and OprD (N142fs) conferring resistance to conventional antipseudomonals but susceptibility to ceftazidime/avibactam, ceftolozane/tazobactam and imipenem/relebactam. Post-exposure isolates showed two divergent ceftazidime/avibactam-resistant phenotypes associated with distinctive mutations affecting the intrinsic P PDC ß-lactamase (S254Ins) (PA2: ceftolozane/tazobactam and ceftazidime/avibactam-resistant) or MexAB-OprM negative regulator MexR in combination with modification of PBP3 (PA3: ceftazidime/avibactam and imipenem/relebactam-relebactam-resistant). Cloning experiments demonstrated the role of PDC modification in resistance to ceftolozane/tazobactam and ceftazidime/avibactam. Complementation with a functional copy of the mexR gene in isolate PA3 restored imipenem/relebactam susceptibility. CONCLUSIONS: We demonstrated how P. aeruginosa may simultaneously develop resistance and compromise the activity of new ß-lactam/ß-lactamase inhibitor combinations when exposed to ceftazidime/avibactam through selection of mutations leading to PDC modification and up-regulation of MexAB-OprM-mediated efflux.


Subject(s)
Ceftazidime , Pseudomonas Infections , Humans , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/therapeutic use , Pseudomonas Infections/drug therapy , Cephalosporinase , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cephalosporins/pharmacology , Cephalosporins/therapeutic use , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Tazobactam/pharmacology , Drug Combinations , Imipenem/pharmacology , Imipenem/therapeutic use , Pseudomonas aeruginosa/genetics , Microbial Sensitivity Tests
9.
BMC Genomics ; 24(1): 29, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36650445

ABSTRACT

BACKGROUND: The methodology described in previous literature for Monkeypox virus (MPXV) sequencing shows low efficiency when using metagenomic approaches. The aim of the present study was to evaluate a new fine-tuned method for extraction and enrichment of genomic MPXV DNA using clinical samples and to compare it to a non-enrichment metagenomic approach. RESULTS: A new procedure that allows sample enrichment in MPXV DNA, avoiding wasting the sequencing capacity in human DNA, was designed. This procedure consisted of host DNA depletion using a saponin/NaCl combination treatment and DNase, together with high g-force centrifugations. After typical quality control, samples using the enrichment method contained around 96% of reads not classified as human DNA, while the non-enrichment protocol showed around 5-10%. When reads not belonging to Orthopoxvirus were removed, enriched samples kept about 50% of the original read counts, while non-enriched ones kept only 2-7%. CONCLUSIONS: Results showed a very significant improvement in sequencing efficiency, increasing the number of reads belonging to MPXV, the depth of coverage and the trustworthiness of the consensus sequences. This, in turn, allows for more samples to be included in a single cartridge, reducing costs and time to diagnosis, which can be very important factors when dealing with a contagious disease.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Humans , Monkeypox virus/genetics , Mpox (monkeypox)/diagnosis , DNA, Viral/genetics
10.
J Antimicrob Chemother ; 77(10): 2809-2815, 2022 09 30.
Article in English | MEDLINE | ID: mdl-35904000

ABSTRACT

OBJECTIVES: To evaluate the activity of cefiderocol, imipenem/relebactam, cefepime/taniborbactam and cefepime/zidebactam against a clinical and laboratory collection of ceftolozane/tazobactam- and ceftazidime/avibactam-resistant Pseudomonas aeruginosa ß-lactamase mutants. METHODS: The activity of cefiderocol, imipenem/relebactam, cefepime/taniborbactam, cefepime/zidebactam and comparators was evaluated against a collection of 30 molecularly characterized ceftolozane/tazobactam- and/or ceftazidime/avibactam-resistant P. aeruginosa isolates from patients previously treated with cephalosporins. To evaluate how the different ß-lactamases in the clinical isolates affected the resistance to these agents, a copy of each blaPDC, blaOXA-2 and blaOXA-10 ancestral and mutant allele from the clinical isolates was cloned in pUCp24 and expressed in dual blaPDC-oprD (for blaPDC-like genes) or single oprD (for blaOXA-2-like and blaOXA-10-like genes) PAO1 knockout mutants. MICs were determined using reference methodologies. RESULTS: For all isolates, MICs were higher than 4 and/or 8 mg/L for ceftolozane/tazobactam and ceftazidime/avibactam, respectively. Cefiderocol was the most active agent, showing activity against all isolates, except one clinical isolate that carried an R504C substitution in PBP3 (MIC = 16 mg/L). Imipenem/relebactam was highly active against all isolates, except two clinical isolates that carried the VIM-20 carbapenemase. Cefepime/zidebactam and cefepime/taniborbactam displayed activity against most of the isolates, but resistance was observed in some strains with PBP3 amino acid substitutions or that overexpressed mexAB-oprM or mexXY efflux pumps. Evaluation of transformants revealed that OXA-2 and OXA-10 extended-spectrum variants cause a 2-fold increase in the MIC of cefiderocol relative to parental enzymes. CONCLUSIONS: Cefiderocol, imipenem/relebactam, cefepime/taniborbactam and cefepime/zidebactam show promising and complementary in vitro activity against ceftolozane/tazobactam- and ceftazidime/avibactam-resistant P. aeruginosa. These agents may represent potential therapeutic options for ceftolozane/tazobactam- and ceftazidime/avibactam-resistant P. aeruginosa infections.


Subject(s)
Ceftazidime , Pseudomonas Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Borinic Acids , Carboxylic Acids , Cefepime/pharmacology , Cefepime/therapeutic use , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Cephalosporins/pharmacology , Cephalosporins/therapeutic use , Cyclooctanes , Humans , Imipenem/pharmacology , Imipenem/therapeutic use , Piperidines , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/genetics , Tazobactam/pharmacology , Tazobactam/therapeutic use , beta-Lactamases/genetics , Cefiderocol
11.
Sci Total Environ ; 811: 152334, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-34921882

ABSTRACT

The quantification of the SARS-CoV-2 RNA load in wastewater has emerged as a useful tool to monitor COVID-19 outbreaks in the community. This approach was implemented in the metropolitan area of A Coruña (NW Spain), where wastewater from a treatment plant was analyzed to track the epidemic dynamics in a population of 369,098 inhabitants. Viral load detected in the wastewater and the epidemiological data from A Coruña health system served as main sources for statistical models developing. Regression models described here allowed us to estimate the number of infected people (R2 = 0.9), including symptomatic and asymptomatic individuals. These models have helped to understand the real magnitude of the epidemic in a population at any given time and have been used as an effective early warning tool for predicting outbreaks in A Coruña municipality. The methodology of the present work could be used to develop a similar wastewater-based epidemiological model to track the evolution of the COVID-19 epidemic anywhere in the world where centralized water-based sanitation systems exist.


Subject(s)
COVID-19 , SARS-CoV-2 , Epidemiological Models , Humans , RNA, Viral , Spain/epidemiology , Viral Load , Wastewater
12.
Front Microbiol ; 12: 752070, 2021.
Article in English | MEDLINE | ID: mdl-34675911

ABSTRACT

Acinetobacter baumannii is a multidrug-resistant pathogen that represents a serious threat to global health. A. baumannii possesses a wide range of virulence factors that contribute to the bacterial pathogenicity. Among them, the siderophore acinetobactin is one of the most important, being essential for the development of the infection. In this study we performed an in-depth analysis of the acinetobactin cluster in the strain A. baumannii ATCC 17978. For this purpose, nineteen individual isogenic mutant strains were generated, and further phenotypical analysis were performed. Individual mutants lacking the biosynthetic genes entA, basG, basC, basD, and basB showed a significant loss in virulence, due to the disruption in the acinetobactin production. Similarly, the gene bauA, coding for the acinetobactin receptor, was also found to be crucial for the bacterial pathogenesis. In addition, the analysis of the ΔbasJ/ΔfbsB double mutant strain demonstrated the high level of genetic redundancy between siderophores where the role of specific genes of the acinetobactin cluster can be fulfilled by their fimsbactin redundant genes. Overall, this study highlights the essential role of entA, basG, basC, basD, basB and bauA in the pathogenicity of A. baumannii and provides potential therapeutic targets for the design of new antivirulence agents against this microorganism.

13.
Water Res ; 199: 117167, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34015748

ABSTRACT

The presence of SARS-CoV-2 RNA in wastewater was first reported in March 2020. Over the subsequent months, the potential for wastewater surveillance to contribute to COVID-19 mitigation programmes has been the focus of intense national and international research activities, gaining the attention of policy makers and the public. As a new application of an established methodology, focused collaboration between public health practitioners and wastewater researchers is essential to developing a common understanding on how, when and where the outputs of this non-invasive community-level approach can deliver actionable outcomes for public health authorities. Within this context, the NORMAN SCORE "SARS-CoV-2 in sewage" database provides a platform for rapid, open access data sharing, validated by the uploading of 276 data sets from nine countries to-date. Through offering direct access to underpinning meta-data sets (and describing its use in data interpretation), the NORMAN SCORE database is a resource for the development of recommendations on minimum data requirements for wastewater pathogen surveillance. It is also a tool to engage public health practitioners in discussions on use of the approach, providing an opportunity to build mutual understanding of the demand and supply for data and facilitate the translation of this promising research application into public health practice.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Public Health , RNA, Viral , Wastewater
14.
Front Microbiol ; 11: 565548, 2020.
Article in English | MEDLINE | ID: mdl-33101239

ABSTRACT

The important nosocomial pathogen Acinetobacter baumannii presents a quorum sensing (QS) system (abaI/abaR) mediated by acyl-homoserine-lactones (AHLs) and several quorum quenching (QQ) enzymes. However, the roles of this complex network in the control of the expression of important virulence-related phenotypes such as surface-associated motility and biofilm formation is not clear. Therefore, the effect of the mutation of the AHL synthase AbaI, and the exogenous addition of the QQ enzyme Aii20J on surface-associated motility and biofilm formation by A. baumannii ATCC® 17978TM was studied in detail. The effect of the enzyme on biofilm formation by several multidrug-resistant A. baumannii clinical isolates differing in their motility pattern was also tested. We provide evidence that a functional QS system is required for surface-associated motility and robust biofilm formation in A. baumannii ATCC® 17978TM. Important differences were found with the well-studied strain A. nosocomialis M2 regarding the relevance of the QS system depending on environmental conditions The in vitro biofilm-formation capacity of A. baumannii clinical strains was highly variable and was not related to the antibiotic resistance or surface-associated motility profiles. A high variability was also found in the sensitivity of the clinical strains to the action of the QQ enzyme, revealing important differences in virulence regulation between A. baumannii isolates and confirming that studies restricted to a single strain are not representative for the development of novel antimicrobial strategies. Extracellular DNA emerges as a key component of the extracellular matrix in A. baumannii biofilms since the combined action of the QQ enzyme Aii20J and DNase reduced biofilm formation in all tested strains. Results demonstrate that QQ strategies in combination with other enzymatic treatments such as DNase could represent an alternative approach for the prevention of A. baumannii colonization and survival on surfaces and the prevention and treatment of infections caused by this pathogen.

15.
Proc Natl Acad Sci U S A ; 117(29): 17249-17259, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32641516

ABSTRACT

Control of infections caused by carbapenem-resistant Klebsiella pneumoniae continues to be challenging. The success of this pathogen is favored by its ability to acquire antimicrobial resistance and to spread and persist in both the environment and in humans. The emergence of clinically important clones, such as sequence types 11, 15, 101, and 258, has been reported worldwide. However, the mechanisms promoting the dissemination of such high-risk clones are unknown. Unraveling the factors that play a role in the pathobiology and epidemicity of K. pneumoniae is therefore important for managing infections. To address this issue, we studied a carbapenem-resistant ST-15 K. pneumoniae isolate (Kp3380) that displayed a remarkable adherent phenotype with abundant pilus-like structures. Genome sequencing enabled us to identify a chaperone-usher pili system (Kpi) in Kp3380. Analysis of a large K. pneumoniae population from 32 European countries showed that the Kpi system is associated with the ST-15 clone. Phylogenetic analysis of the operon revealed that Kpi belongs to the little-characterized γ2-fimbrial clade. We demonstrate that Kpi contributes positively to the ability of K. pneumoniae to form biofilms and adhere to different host tissues. Moreover, the in vivo intestinal colonizing capacity of the Kpi-defective mutant was significantly reduced, as was its ability to infect Galleria mellonella The findings provide information about the pathobiology and epidemicity of Kpi+K. pneumoniae and indicate that the presence of Kpi may explain the success of the ST-15 clone. Disrupting bacterial adherence to the intestinal surface could potentially target gastrointestinal colonization.


Subject(s)
Fimbriae, Bacterial/genetics , Klebsiella pneumoniae/genetics , Molecular Chaperones/genetics , A549 Cells , Animals , Anti-Bacterial Agents , Bacterial Adhesion/drug effects , Bacterial Adhesion/genetics , Biofilms/drug effects , Biofilms/growth & development , Carbapenems/pharmacology , Cell Line , Disease Models, Animal , Drug Resistance, Multiple, Bacterial/genetics , Epithelial Cells/microbiology , Europe , Female , Gene Deletion , Genes, Bacterial/genetics , Humans , Klebsiella Infections , Klebsiella pneumoniae/cytology , Klebsiella pneumoniae/drug effects , Mice , Mice, Inbred BALB C , Multilocus Sequence Typing , Operon , Phylogeny
16.
PLoS One ; 12(8): e0182084, 2017.
Article in English | MEDLINE | ID: mdl-28763494

ABSTRACT

Many strains of Acinetobacter baumannii have been described as being able to form biofilm. Small non-coding RNAs (sRNAs) control gene expression in many regulatory circuits in bacteria. The aim of the present work was to provide a global description of the sRNAs produced both by planktonic and biofilm-associated (sessile) cells of A. baumannii ATCC 17978, and to compare the corresponding gene expression profiles to identify sRNAs molecules associated to biofilm formation and virulence. sRNA was extracted from both planktonic and sessile cells and reverse transcribed. cDNA was subjected to 454-pyrosequencing using the GS-FLX Titanium chemistry. The global analysis of the small RNA transcriptome revealed different sRNA expression patterns in planktonic and biofilm associated cells, with some of the transcripts only expressed or repressed in sessile bacteria. A total of 255 sRNAs were detected, with 185 of them differentially expressed in the different types of cells. A total of 9 sRNAs were expressed only in biofilm cells, while the expression of other 21 coding regions were repressed only in biofilm cells. Strikingly, the expression level of the sRNA 13573 was 120 times higher in biofilms than in planktonic cells, an observation that prompted us to further investigate the biological role of this non-coding transcript. Analyses of an isogenic mutant and over-expressing strains revealed that the sRNA 13573 gene is involved in biofilm formation and attachment to A549 human alveolar epithelial cells. The present work serves as a basis for future studies examining the complex regulatory network that regulate biofilm biogenesis and attachment to eukaryotic cells in A. baumannii ATCC 17978.


Subject(s)
Acinetobacter baumannii/genetics , Biofilms , Gene Expression Profiling , RNA, Small Untranslated/genetics , A549 Cells , Acinetobacter baumannii/physiology , Cell Line, Tumor , DNA, Complementary/genetics , Gene Expression Regulation, Bacterial , Humans , Microscopy, Electron, Scanning , RNA, Bacterial/genetics , Virulence
17.
Infect Immun ; 85(8)2017 08.
Article in English | MEDLINE | ID: mdl-28507065

ABSTRACT

Acinetobacter baumannii is a major cause of antibiotic-resistant nosocomial infections worldwide. In this study, several rifampin-resistant spontaneous mutants obtained from the A. baumannii ATCC 17978 strain that differed in their point mutations in the rpoB gene, encoding the ß-subunit of the RNA polymerase, were isolated. All the mutants harboring amino acid substitutions in position 522 or 540 of the RpoB protein were impaired in surface-associated motility and had attenuated virulence in the fertility model of Caenorhabditis elegans The transcriptional profile of these mutants included six downregulated genes encoding proteins homologous to transporters and metabolic enzymes widespread among A. baumannii clinical isolates. The construction of knockout mutants in each of the six downregulated genes revealed a significant reduction in the surface-associated motility and virulence of four of them in the A. baumannii ATCC 17978 strain, as well as in the virulent clinical isolate MAR002. Taken together, our results provide strong evidence of the connection between motility and virulence in this multiresistant nosocomial pathogen.


Subject(s)
Acinetobacter baumannii/genetics , Acinetobacter baumannii/pathogenicity , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Point Mutation , Acinetobacter Infections/microbiology , Acinetobacter baumannii/enzymology , Acinetobacter baumannii/physiology , Amino Acid Substitution , Animals , Bacterial Proteins/genetics , Caenorhabditis elegans/microbiology , Cross Infection/microbiology , DNA-Directed RNA Polymerases/chemistry , Down-Regulation , Drug Resistance, Multiple, Bacterial , Gene Expression Profiling , Gene Knockout Techniques , Humans , Membrane Transport Proteins/genetics , Virulence/genetics
18.
Article in English | MEDLINE | ID: mdl-28421168

ABSTRACT

Genetic and functional studies showed that some components of the Acinetobacter baumannii ATCC 17978 A1S_0112-A1S_0119 gene cluster are critical for biofilm biogenesis and surface motility. Recently, our group has shown that the A1S_0114 gene was involved in biofilm formation, a process related with pathogenesis. Confirming our previous results, microscopy images revealed that the ATCC 17978 Δ0114 derivative lacking this gene was unable to form a mature biofilm structure. Therefore, other bacterial phenotypes were analyzed to determine the role of this gene in the pathogenicity of A. baumannii ATCC 17978. The interaction of the ATCC 17978 parental strain and the Δ0114 mutant with A549 human alveolar epithelial cells was quantified revealing that the A1S_0114 gene was necessary for proper attachment to A549 cells. This dependency correlates with the negative effect of the A1S_0114 deletion on the expression of genes coding for surface proteins and pili-assembly systems, which are known to play a role in adhesion. Three different experimental animal models, including vertebrate and invertebrate hosts, confirmed the role of the A1S_0114 gene in virulence. All of the experimental infection assays indicated that the virulence of the ATCC 17978 was significantly reduced when this gene was inactivated. Finally, we discovered that the A1S_0114 gene was involved in the production of a small lipopeptide-like compound herein referred to as acinetin 505 (Ac-505). Ac-505 was isolated from ATCC 17978 spent media and its chemical structure was interpreted by mass spectrometry. Overall, our observations provide novel information on the role of the A1S_0114 gene in A. baumannii's pathobiology and lay the foundation for future work to determine the mechanisms by which Ac-505, or possibly an Ac-505 precursor, could execute critical functions as a secondary metabolite.


Subject(s)
Acinetobacter baumannii/genetics , Acinetobacter baumannii/pathogenicity , Bacterial Adhesion , Epithelial Cells/microbiology , Host-Pathogen Interactions , Virulence Factors/genetics , Acinetobacter Infections/microbiology , Acinetobacter Infections/pathology , Acinetobacter baumannii/physiology , Adhesins, Bacterial/genetics , Animals , Biofilms/growth & development , Caenorhabditis elegans , Cell Line , Disease Models, Animal , Female , Gene Deletion , Humans , Lepidoptera , Mice, Inbred BALB C , Microscopy , Virulence
19.
Virulence ; 7(4): 443-55, 2016 05 18.
Article in English | MEDLINE | ID: mdl-26854744

ABSTRACT

Acinetobacter baumannii is a nosocomial pathogen that has a considerable ability to survive in the hospital environment partly due to its capacity to form biofilms. The first step in the process of establishing an infection is adherence of the bacteria to target cells. Chaperone-usher pili assembly systems are involved in pilus biogenesis pathways that play an important role in adhesion to host cells and tissues as well as medically relevant surfaces. After screening a collection of strains, a biofilm hyper-producing A. baumannii strain (MAR002) was selected to describe potential targets involved in pathogenicity. MAR002 showed a remarkable ability to form biofilm and attach to A549 human alveolar epithelial cells. Analysis of MAR002 using transmission electron microscopy (TEM) showed a significant presence of pili on the bacterial surface. Putative protein-coding genes involved in pili formation were identified based on the newly sequenced genome of MAR002 strain (JRHB01000001/2 or NZ_JRHB01000001/2). As assessed by qRT-PCR, the gene LH92_11085, belonging to the operon LH92_11070-11085, is overexpressed (ca. 25-fold more) in biofilm-associated cells compared to exponential planktonic cells. In the present work we investigate the role of this gene on the MAR002 biofilm phenotype. Scanning electron microscopy (SEM) and biofilm assays showed that inactivation of LH92_11085 gene significantly reduced bacterial attachment to A549 cells and biofilm formation on plastic, respectively. TEM analysis of the LH92_11085 mutant showed the absence of long pili formations normally present in the wild-type. These observations indicate the potential role this LH92_11085 gene could play in the pathobiology of A baumannii.


Subject(s)
Acinetobacter baumannii/genetics , Acinetobacter baumannii/physiology , Bacterial Adhesion , Bacterial Proteins/genetics , Biofilms/growth & development , A549 Cells , Acinetobacter baumannii/pathogenicity , Acinetobacter baumannii/ultrastructure , Alveolar Epithelial Cells/microbiology , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Fimbriae, Bacterial/genetics , Genes, Bacterial , Humans , Microscopy, Electron, Scanning , Virulence/genetics
20.
Genome Announc ; 3(4)2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26205868

ABSTRACT

We report the draft genome sequence of Acinetobacter baumannii strain MAR002, a biofilm-hyperproducing clinical strain isolated during the study CP/09/0033 (GEIH/REIPI-Ab2010, Spain). The genome of A. baumannii MAR002 has an approximate length of 3,717,929 bp and 3,300 protein-coding sequences, with a C+G content of 39.09%.

SELECTION OF CITATIONS
SEARCH DETAIL
...